Technology insights

Find out more about the latest developments from Infrasolid and gain an insight into technical details. We regularly publish groundbreaking innovations to our products and services on this page. If you have any questions or require a customised development for your project, please feel free to contact us.

Technology insights 25/02

Adjustability is key - novel NDIR multi-gas sensor approach

Standard multi-gas detection

NDIR gas sensors are increasingly being adapted for multi-gas detection, allowing for the simultaneous measurement of multiple gases in a single setup. This capability is particularly valuable in industrial and medical applications. Common approaches are:

  • Multiple IR sources: NDIR systems utilize multiple infrared light sources, each tuned to specific wavelengths associated with different target gases, e.g. CO2, CO and CH4.
  • Multichannel IR detectors: Modern systems often employ multichannel detectors with up to eight channels (see Insights 24/04) by using different bandpass filters each adapted to a specific target gas for a simultaneously signal capturing from multiple wavelengths.

These common NDIR multi-gas sensors face several limitations in performance mainly due to the fixed and equal absorption path length for all channels (Fig. 1). This applies in particular to the dynamic and  measurement ranges as well as the detection limits of the multi-gas sensor.

Adjustable absorption path length

However, each gas has a specific absorption coefficient, is present in different concentrations in a gas mixture, and depending on the application, different emission and exposure limits apply which must be complied with. Therefore, an adjustable absorption path length for each spectral channel increases performance of NDIR multi-gas sensors.

A novel NDIR multi-gas sensor approach enables different and adjustable absorption path lengths in a single optical path (Fig. 2). Single-element detectors are used, each of which is positioned at a reflection point. At each reflection point, a spectral filter transmits a narrow wavelength band (according to a specific gas) to the detector positioned behind it, while reflecting the remaining broadband radiation back into the optical path toward the next reflection point (Fig. 3). The system is modular making it very cost-efficient with a simple adjustment of the path lengths and target gases. In addition, it enables the simultaneous use of different IR detector types, e.g. pyroelectric, thermopile and even photoacoustic detectors, depending on the needs (measurement range, detection limit, costs, etc.).

Technology insights 25/01

Too hot to handle – broadband light sources for SWIR and MWIR range

From tradition to innovation

Traditionally, high-temperature infrared (IR) emitters like the incandescent lamp use a fragile radiating element made of a coiled tungsten wire and a housing made of glass, limiting optical emittance to the short-wavelength infrared (SWIR) or near-infrared (NIR) range. However, a new generation of high-temperature thermal IR emitters (Fig. 1) using robust metal-sheet filaments and sapphire windows extend this range up to a wavelength of 6 microns, covering both SWIR and mid-wavelength infrared (MWIR) spectrums.

A new generation of high-temperature IR emitters

Our unique and patented metal-sheet filament technology (see Insights 24/02)  provides a flat and free-standing IR emitter filament of high robustness and efficiency. The large light-emitting surface can be easily customized to different sizes and geometries by using standard MEMS fabrication processes. A key feature for high-temperature operation is the hermetic housing that is provided by our SOLIDSEAL® technology. Besides available standard glass packages this enables the IR emitters to be equipped with a soldered sapphire window to extend the spectral emittance to significantly higher wavelengths (Fig. 2). Sapphire's hardness and resistance to environmental factors make the emitter robust, especially in harsh conditions with low ambient pressures and temperatures.

Bring unparalleled performance to your projects

In traditional analytical applications, such as infrared spectroscopy, where optical imaging of the light-emitting surface is required, the metal-sheet filament offers a stable and reproducible filament position, eliminates the need for time-consuming lamp positioning and provides a hot spot of high optical output power to ensure reliable and highly accurate measurements.

However, the exceptional performance of this new class of IR emitters enables new possibilities in non-analytical applications, like enhanced imaging and infrared tracking, a contact-less vaporization of liquids (Fig. 3) or even a non-contact pocket lighter with the right optical focus (Fig. 1).

Experience the future of infrared technology today!

Technology insights 24/04

探索多通道NDIR气体分析的局限性

测量气体浓度的常用方法

非色散红外 (NDIR) 气体分析(图 1)是一种广泛使用的技术,用于检测和量化各种工业、环境和医疗应用中的气体浓度。然而,NDIR气体传感器在灵敏度和准确性方面存在局限性,特别是在测量低浓度气体时。这些限制主要是由于红外 (IR) 源和探测器组件的性能限制。传统的红外光源,如线丝和Si-MEMS发射器,光输出功率和信号稳定性有限,导致信噪比降低,测量灵敏度降低。

高性能红外发射器

INFRASOLID开发了HISpower系列,这是一系列高性能热红外发射器,采用标准工业TO-8外壳,专为高精度NDIR气体分析而设计。为了展示其无与伦比的性能,我们建造了一个NDIR演示器(图2),该演示器利用了INFRASOLID的HIS2000R-CWC300红外发射器和世界上第一个八通道热释电探测器InfraTec LRM-278。红外光源的超高辐射功率产生高探测器信号 红外光源的极高辐射功率产生高探测器信号,无需额外的信号放大(图 3)。这允许将模拟检测器信号直接转换为数字信号,以便进行进一步的信号处理。电子和信号处理被最小化,从而消除了更多的噪声源并降低了制造成本。宽波长范围从 (2...20) μm 使其能够广泛用于工业、环境和医疗应用。

将NDIR气体分析推向极限

高性能红外组件在NDIR气体分析中起着至关重要的作用。通过红外源和红外探测器的优化组合,可以突破NDIR气体分析的界限。这样,需要测量最低气体浓度的应用,如排放监测和环境传感,可以满足新的法律法规。

Technology insights 24/03

陶瓷热发射器是红外辐射黑体源吗?

碳化硅 (SIC) 炽热棒

碳化硅(SiC)炽热棒是红外光谱测量设备中最常用的红外(IR)光源。它具有高辐射率的特点,工作温度通常在 1200 K 到 1600 K 之间,因此在中红外和远红外范围内具有较高的光输出信号。然而,这些基于陶瓷的红外光源并不是理想的黑体辐射源,尤其是在波长大于 10 μm 的远红外和太赫兹(THz)范围内 (图 1)。

黑体辐射

根据斯特凡-玻尔兹曼定律,红外线辐射器的高光学输出是通过高辐射率、大范围辐射和高温的组合来实现的。不过,值得注意的是,根据普朗克辐射定律和维恩位移定律,工作温度的升高会导致黑体辐射的峰值强度向短波长移动,而对增加长波长的光输出影响较小。因此,要在远红外和太赫兹(THz)范围内实现最佳性能,最大限度地提高辐射率和确保足够大的辐射面积至关重要。

黑色涂层的氧化铝陶瓷

为了提高陶瓷在远红外和太赫兹范围内的发射率,我们开发了一种新型黑色涂层。它可以涂在氧化铝陶瓷的两面(图 2),辐射率接近黑体(见图 1)。与标准碳化硅炽热棒相比,这种黑色涂层的工作温度可达 1200 K 或更高,并能产生更高的信号(图 3)。此外,较高的发射率还能降低工作温度,这也带来了一些好处。

傅立叶变换红外光谱的优点

在傅立叶变换红外光谱仪等测量仪器中,较低工作温度的红外发射器具有许多优点:温度漂移较小、稳定性和使用寿命较高、测量速度较快、几乎没有火灾风险、与生物应用相关的无样品加热等。

Technology insights 24/02

金属片灯丝

钨丝灯泡--宽带标准

钨(卤素)灯因其辐射光谱宽广,通常用作近红外波长范围内吸收光谱分析的光源(图1)。它还用于大容量 气体传感应用,如测量二氧化碳和碳氢化合物。然而,脆弱而纤细的金属丝并不能满足理想光源的所有要求。为了确保可靠和高精度的测量,稳定和可重复的灯丝位置至关重要。要实现这种稳定性,需要复杂和高精度的灯泡制造。冲击和振动也可能导致灯的强度闪烁,从而限制测量的准确性。在实际应用中,往往需要耗费大量时间来正确定位白炽灯。

改进灯丝

灯丝的光度特性主要取决于其几何形状。首选的光源是具有正方形发光表面的扁平灯丝。大部分发射光垂直于灯丝的平面辐射,与收集光学元件对准,从而实现最高效率。INFRASOLID 采用独特的发射器技术,通过发射近红外和中红外范围内的宽光谱光,提供由整体高熔点金属制成的独立金属片灯丝(图 2)。钨丝灯丝在振动和冲击时可在所有空间方向上移动,而金属片灯丝则不同,它只能沿一个轴线进行非常有限的移动,类似于一张夹紧的纸。这就提供了更高的机械和光学稳定性,从而能够在恶劣环境中使用手持设备进行更精确的测量。它还消除了耗时的灯管定位需要。

定制化

金属片灯丝可以制造成不同的尺寸和几何形状,以轻松适应客户的特定应用。金属片灯丝的面积越大,光输出就越高(见图 1)。由于近红外和中红外光谱范围内的宽带发光二极管非常有限,像灯泡这样的热发射器将继续成为吸收光谱应用的标准光源。

Technology insights 24/01

红外魔方 - 遥感红外线矩阵

SMD封装红外光源

SMD 是表面贴装器件(Surface Mount Device)的缩写,指直接安装在印刷电路板 PCB)表面的电子元件。与传统的通孔封装 相比,这些封装设计得更小、更高效,而传统 的通孔封装仍是红外(IR)光学元件的标准。然而,SMD 封装因其在尺寸、成本、性能和 易于自动化装配方面的优势,已成为现代电子 制造业的主流选择。

INFRASOLID 拥有独特的红外光源专利技术,能够制造出不同 SMD 封装的高效微型热红 外光源。如图 1 所示,高度微型化使红外辐 射器矩阵与可单独控制的元件紧凑地排列在一起。SMD封装的红外光源具有宽带辐射光谱,可配备不同的滤光窗口,发射不同的波长,即显示不同的颜色。

自动化和大批量应用

SMD 技术提高了 PCB 组装的效率和自动化程度,从而提高了生产率、减少了错误、降低了 浪费并降低了成本。SMD元件体积小,与印刷 电路板接触的表面积大,因此对物理冲击和振 动的承受能力更强。小尺寸使印刷电路板上的 元件密度更高,从而使电子设备更小、更紧 凑。因此,SMD封装的红外光源将为全新的应 用铺平道路,如用于气体传感、材料分析和遥 感的手持式、便携式和无线设备。

遥感应用

SMD红外光源阵列(如 3x3 像素)可产生不 同的排列方式,如图 2 所示,用于遥感应用 中的通信和识别,以及光学系统的精确对准。它还能在具有挑战性的视觉条件、恶劣环境和 远距离条件下进行探测。让我们一起探讨SMD红外光源阵列在您未来应 用中的可能性吧。

Are you looking for other technical specifications or would you like an individual development? Feel free to contact us!